If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2=-250
We move all terms to the left:
-16t^2-(-250)=0
We add all the numbers together, and all the variables
-16t^2+250=0
a = -16; b = 0; c = +250;
Δ = b2-4ac
Δ = 02-4·(-16)·250
Δ = 16000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16000}=\sqrt{1600*10}=\sqrt{1600}*\sqrt{10}=40\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{10}}{2*-16}=\frac{0-40\sqrt{10}}{-32} =-\frac{40\sqrt{10}}{-32} =-\frac{5\sqrt{10}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{10}}{2*-16}=\frac{0+40\sqrt{10}}{-32} =\frac{40\sqrt{10}}{-32} =\frac{5\sqrt{10}}{-4} $
| 15x+4=28 | | 2n=60n+5 | | 24-2t=12 | | z+(z+13)=125 | | 85=c/4+75 | | 3u-9=-3(u+7) | | 2x+3x=225 | | (4-x)^7/5=128 | | 6x^-2x-4=0 | | 5(c+1)=60 | | x(1/4x+1/5x)=29 | | (6x+5)(3x-7)=1180 | | 3x-155=101 | | 1/4x+1/5x=29 | | 36+7v=2v | | 9=j-66/2 | | 8-`1.2y=2 | | 8+5+x=180 | | 0.8-x=0.67x+1.67 | | 5(x-3)+6=4x+3= | | 2-17h=1/2 | | 2+17h=1/2 | | 5(x-3)+6=5x-10= | | 3=b-78/6 | | 2g-5=-23 | | (4/5)-x=(2/3)x+(5/3) | | 8+10n=-12 | | 5(x-3)+6=5x-9= | | c+39/4=2 | | 3(x+5)=2(3x+12)= | | 6d^2=96 | | 3y+5=y-23 |